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1. Introduction

We study the quantum dynamics of fermions in a homogeneous but temporally varying

background field including collisions with a thermal background. These conditions are

appropriate to model for example the particle production during preheating at the end

of inflation or during cosmological phase tranistions [1, 2], as well as baryogenesis during

preheating [3], or coherent baryogenesis [4]. They are relevant also for neutrino oscillations

in the early universe [5], or just for generic studies of thermalisation of quantum systems [6].

The formalism we will be developing here can also be modified for a treatment of static

problems with planar symmetry [7, 8]. In this form the resulting kinetic equations will be of
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interest for problems involving quantum reflection such as electroweak baryogenesis [9, 10].

For related studies of quantum transport equations for electroweak baryogenesis starting

from similar theoretical foundation see e.g. [11, 12].

By use of the CTP-formalism [13, 14] we will set up quantum kinetic equations for

the fermionic 2-point function G<. We find that these equations admit a rich structure of

spectral solutions including the expected mass-shell solutions for particle and antiparticle

excitations, but also a new class of solutions living in k0 = 0-shell in the phase space [7]. We

interpret the arbitrary weight functions on these shells as describing the out-of-equilibrium

particle and antiparticle numbers (mass shells) and the quantum coherence between par-

ticles and antiparticles (k0 = 0-shell). New coherence solutions are shown to be excluded

from the spectral function by the spectral sum-rule, which indicates that they are not part

of the kinematic phase space, although they necessarily occur in the dynamical function

G<. These solutions are also eliminated from G< by the requirement of a strict transla-

tional invariance of the solution [7], or by the KMS-conditions in the thermal limit. As

a consequence of the singular shell structure, an integration procedure is needed in order

to define a physical density matrix in terms of the original 2-point function. We show

how this procedure necessarily involves specifying precisely the amount of information on

the system, and derive an evolution equation for a density matrix relevant for a spatially

homogenous case, including quantum coherence. We then introduce the interactions and

show that the spectral structure for the phase space including the coherence shell solutions

survives in the quasiparticle limit with the interactions. We set up dynamical equations

for the physical density matrix including the interactions and compute explicit expressions

for the collision integrals in the case of a simple model Lagrangian describing decays and

inverse decays. The interaction terms are shown to contain the usual collision terms that

push the mass-shell functions towards thermal limit, but also other collision terms that

tend to bring the quantum coherence functions to zero. The loss of coherence does not

happen instantly, like a collapse of a wave function, but smoothly over a characteristic time

scale set by the strength of the interactions at the shell k0 = 0, in close analogy to the

damping of coherence in the case of neutrino oscillations [5].

In our approach we define the fermionic number density in the same way as in thermal

field theory, that is, as an dimensionless real-valued function living on the positive mass-

shell of the spectral form 2-point correlator. With this definition we see that in thermal

limit the number density is indeed the standard Fermi-Dirac distribution. We will show

that our definition for the particle number agrees with that of ref. [2], where it was derived

using the operator methods and Bogolyubov transformation to diagonalize the fermionic

Hamiltonian. We also derive expressions for the energy density and the pressure. The latter

is shown to differ from the statistical pressure, but the statistical pressure is retrieved for

any realistic measurement that averages out the quantum oscillations. As applications of

our formalism we calculate particle number production during fermionic preheating includ-

ing finite decay width for the heavy particles produced. We will see that the decoherence

induced by the decays can have dramatic effect on the particle number evolution. We also

show explicitly how an initially highly correlated out-of-equilibrium density matrix relaxes

to a thermal equilibrium as a result of collisions.
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Figure 1: Schwinger-Keldysh path in complex time.

This paper is organized as follows: In section 2 we give a brief intoduction to Shwinger-

Keldysh CTP-formalism in order to write down the fermionic Kadanoff-Baym (KB) trans-

port equations for 2-point correlation functions. In section 3 we study the noninteracting

KB-(or Dirac) equation and find out the nontrivial phase-space shell structure including

the new k0 = 0-shell. In section 4 we define a nonsingular physical density matrix, as a

weighted integral over the initial singular 2-point function and show that its evolution is

heavily dependent on the extrenous information we have on the system. The material in

the sections 3–4 partly overlaps with the derivation in the companion paper [7], but we

include a shortened discussion here for completeness. In section 5 we will compute the

particle number density, energy density and pressure in terms of the density matrix. In

section 6 we generalize our kinetic equations to include collisions. We study the particle

production at the preheating and the decoherence phenomenon in sections 7.1 and 7.2, and

finally section 8 contains our conclusions.

2. General fermionic CTP-formalism

The basic object of interest in this paper is the fermionic 2-point Wightmann function

defined as:

iG<
αβ(u, v) ≡ 〈ψ̄β(v)ψα(u)〉 ≡ Tr

{

ρ̂ ψ̄β(v)ψα(u)
}

, (2.1)

where ρ̂ is some unknown quantum density operator describing the properties of the system.

In a non-interacting theory G< decouples from other n-point functions and the dynamical

equation it satisfies is equivalent to the ordinary Dirac equation. This problem was studied

carefully in ref. [7]. However, here we wish to include interactions, and so it is necessary to

work in the framework of the quantum field theory. The QFT formalism that is well suited

for the study of ”in-in”-correlators1 like (2.1) in possibly out-of-equilibrium conditions is

called Schwinger-Keldysh or Closed Time Path (CTP) formalism [13, 14]. In that formalism

one defines a path ordered 2-point function on a complex Keldysh time-path (Dirac indices

are suppressed):

iGC(u, v) =
〈

TC
[

ψ(u)ψ̄(v)
]〉

, (2.2)

1With ”in-in”-correlator we mean that the matrix elements are expectation values 〈in|A|in〉, in contrast

to the traditional QFT transition amplitudes 〈out|A|in〉 with different in and out states
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Figure 2: A generic form of a Schwinger-Keldysh equation for the 2-point function G<.

where TC defines time ordering along the Keldysh contour C, which starts at some t0, often

taken to be at −∞, goes to +∞, and then back to t0 (see figure 1).

It can be shown for example by using the two-particle-irreducible (2PI) effective action

techniques [15, 14] that the 2-point function GC(x, y) obeys the contour Schwinger-Dyson

equation:

GC(u, v) = G0
C(u, v) +

∫

C

d4z1

∫

C

d4z2 G
0
C(u, z1)ΣC(z1, z2)GC(z2, v) , (2.3)

Equation (2.3) is formally expressed in figure 2, where the thin lines correspond to the free

particle (tree level) propagator G0
C , and the thick lines to the full propagator GC . The filled

ellipsis represents the self-energy function ΣC , whose precise form depends on the model

Lagrangian and a truncation scheme. ΣC couples GC to an infinite (BBGKY-) hierarchy

of equations for higher (up to infinite) order Green’s functions, and some approximation

scheme is needed to truncate this hierarchy to obtain the closure. In the weak coupling

limit it will be natural to do this by substituting all higher than 2-point functions by

their perturbative expressions. However, we can learn a lot about the structure of the SD-

equations (2.3) without ever making any reference to the explicit form of Σ. Multiplying

eq. (2.3) by the inverse of the free particle propagator (G0
C)

−1 and integrating over the

connecting variable z1 one finds
∫

C

d4zG0
C(u, z)

−1GC(z, v) = δC(u− v) +

∫

C

d4zΣC(u, z)GC(z, v), (2.4)

where δC(u− v) ≡ δC(u
0
C − v0

C)δ
3(~u−~v) is a contour time delta-function. The complex time

Green’s function in (2.2)–(2.4) can be conveniently decomposed in four different 2-point

functions with respect to usual real time variable:

iG<(u, v) ≡ −iG+−(u, v) ≡ 〈ψ̄(v)ψ(u)〉
iG>(u, v) ≡ iG−+(u, v) ≡ 〈ψ(u)ψ̄(v)〉
iGF (u, v) ≡ iG++(u, v) ≡ θ(u0 − v0)G

>(u, v) − θ(v0 − u0)G
<(u, v)

iGF̄ (u, v) ≡ iG−−(u, v) ≡ θ(v0 − u0)G
>(u, v) − θ(u0 − v0)G

<(u, v) , (2.5)

where GF and GF̄ are the chronological (Feynman) and anti-chronological (anti-Feynman)

Green’s functions, respectively, andG< andG> are the (quantum) Wightmann distribution

functions. Similar decomposition can be done for the contour self-energy ΣC . By using the

2PI effective action techniques the self-energies on different branches are obtained by the

following functional differentiation (see eg. [12]):

Σab(u, v) ≡ −iab δΓ2[G]

δGba(v, u)
, (2.6)
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where Γ2 is the sum of all two particle irreducible vacuum graphs of the theory and the

indices a, b refer to the position of the arguments u and v, respectively, on the complex

Keldysh time path (for example a = +1(−1) implies that u belongs to the upper (lower)

branch of the time contour in figure 1.) We use the same notation Σ< = −Σ+−, etc. as

for propagators (2.5). Using these definitions and the relations:
∫

C
d4u → ∑

a a
∫∞

−∞
d4u

and δC(u
0
C − v0

C) → aδabδ(u
0 − v0) between complex Keldysh time and the usual real time

variables, we can write eq. (2.4) in the following matrix form:

G−1
0 ⊗G = σ3 δ + Σ ⊗ σ3G, (2.7)

where

G =

(

GF −G<

G> GF̄

)

, Σ =

(

ΣF −Σ<

Σ> ΣF̄ ,

)

(2.8)

and σ3 is the usual Pauli matrix, and we defined a shorthand notation ⊗ for the convolution

integral:

f ⊗ g ≡
∫

d4zf(u, z)g(z, v). (2.9)

We have also left out the labels u and v where obvious; for example δ ≡ δ4(u− v).

2.1 Kadanoff-Baym equations

It’s appropriate to further define the retarded and advanced propagators (a similar decom-

position obviously holds for the self energy function Σ):

Gr(u, v) ≡ θ(u0 − v0)(G< +G>)

Ga(u, v) ≡ −θ(v0 − u0)(G< +G>). (2.10)

Equations (2.7) take on a particularily compact from when written in terms of these new

Green’s functions:

(G−1
0 − Σr,a) ⊗Gr,a = δ (2.11)

(G−1
0 − Σr) ⊗G<,> = Σ<,> ⊗Ga. (2.12)

Equations (2.11) and (2.12) are called pole equations and Kadanoff-Baym (KB) equations,

respectively. In general, the former will fix the spectral properties of the theory, while the

latter will give the dynamical evolution, including quantum transport effects. Indeed, in

the classical limit the KB-equations (2.12) will reduce to well known Boltzmann transport

equation for the phase space number density [16, 11, 12].

It can be easily shown that the defined 2-point functions have the following hermiticity

properties:

[

iG<,>(u, v)γ0
]†

= iG<,>(v, u)γ0

[

iGr(u, v)γ0
]†

= −iGa(v, u)γ0. (2.13)
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These identities suggest to decompose Gr,a into Hermitian and anti-Hermitian parts:

GH ≡ 1

2
(Ga +Gr)

A ≡ 1

2i
(Ga −Gr) =

i

2

(

G< +G>
)

. (2.14)

The anti-Hermitian part A is called the spectral function. Based on (2.10) it is easy to

show that GH and A obey the spectral relation:

GH(u, v) = −isgn(u0 − v0)A(u, v). (2.15)

Since the self-energies Σ satisfy identities similar to (2.13), it’s appropriate to define the

Hermitian and anti-Hermitian parts of Σr,a as well:

ΣH ≡ 1

2
(Σa + Σr)

Γ ≡ 1

2i
(Σa − Σr) =

i

2

(

Σ< + Σ>
)

. (2.16)

By using the definitions (2.14) and (2.16) it is now straightforward to show that the pole

equations (2.11) can be written in the form:

(G−1
0 − ΣH) ⊗A− Γ ⊗GH = 0

(G−1
0 − ΣH) ⊗GH + Γ ⊗A = δ . (2.17)

while the KB-equation (2.12) for G< gives:

(G−1
0 − ΣH) ⊗G< − Σ< ⊗GH =

1

2

(

Σ> ⊗G< − Σ< ⊗G>
)

(2.18)

Assuming we will solve the spectral function from the pole equations (2.17), we don’t need

to consider the other KB-equation for G>, since from the definition (2.14) it immediately

follows that

G> = −G< − 2iA . (2.19)

Further, we know that the canonical equal time anticommutation relation of the field

operators

{ψ(t, ~u), ψ†(t, ~v)} = −iδ3(~u− ~v) (2.20)

must be satisfied by all physical field configurations. Using definitions (2.5) and (2.14) it

is easy to see that relations (2.20) imply the condition

2A(t, ~u; t, ~v)γ0 = δ3(~u− ~v) (2.21)

on the spectral function. This is the direct space version of the spectral sum-rule. It

follows also directly from eqs. (2.15) and (2.17) without a reference to the commutation

relation (2.20). Note that apart from a possible implicit dependence of Γ on G<,> the

pole equations (2.17) are entirely independent of dynamical evolution. This is exactly as it

should be; the dynamical evolution can affect the spectral solutions related to the kinematic

phase space only indirectly by changing the ambient conditions in the plasma in which the

particles are moving.

– 6 –
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2.2 Lagrangian density and the mixed representation

We now want to write the spectral and dynamical equations in detail in the mixed represen-

tation, by Fourier transforming the 2-point functions with respect to the relative coordinate

r ≡ u − v. This representation is useful in dealing with the evolution equations because

it performs a separation of the internal and external distance scales of the problem, and

easily allows expansions in the gradients in a (slowly varying) external coordinate. At this

point we also wish to specify explicitly the free particle Green’s function G0; in this paper

we will consider the following CP-violating fermionic Lagrangian

L = iψ̄ ∂/ ψ + ψ̄LmψR + ψ̄Rm
∗ψL + Lint , (2.22)

where m(x) = mR(x) + imI(x) is complex, possibly spacetime dependent mass and Lint is

the interaction part to be defined later. From eq. (2.22) it’s easy to see that

G−1
0 (u, v) = δ4(u− v)(i ∂/v −m∗(v)PL −m(v)PR) , (2.23)

where PL,R = 1
2(1∓γ5). Next, we define the Wigner transformation of an arbitrary 2-point

function as follows:

F (k, x) ≡
∫

d 4r eik·rF (x+ r/2, x− r/2). (2.24)

where x is the average coordinate, and k is the internal momentum variable conjugate to

relative coordinate r. Performing the Wigner transformation to eqs. (2.17) and (2.18) we

get the pole- and KB-equations in the mixed representation:
(

k/ +
i

2
∂/x −m̂0 − im̂5γ

5

)

A− e−i♦{ΣH}{A} − e−i♦{Γ}{GH} = 0 (2.25)

(

k/ +
i

2
∂/x −m̂0 − im̂5γ

5

)

GH − e−i♦{ΣH}{GH} + e−i♦{Γ}{A} = 1 (2.26)

and
(

k/ +
i

2
∂/x −m̂0 − im̂5γ

5

)

G< − e−i♦{ΣH}{G<} − e−i♦{Σ<}{GH} = Ccoll, (2.27)

where the collision term is given by

Ccoll ≡
1

2
e−i♦

(

{Σ>}{G<} − {Σ<}{G>}
)

. (2.28)

The ♦-operator is the following generalization of the Poisson brackets:

♦{f}{g} =
1

2
[∂Xf · ∂kg − ∂kf · ∂Xg] (2.29)

and the mass operators m̂0 and m̂5 are defined as:

m̂0,5F (k, x) ≡ mR,I(x)e
− i

2
∂m

x ·∂F
k F (k, x) . (2.30)

Transforming eq. (2.21) in the same way gives the well known momentum space represen-

tation of the spectral sum-rule:
∫

dk0

π
A(k, x)γ0 = 1. (2.31)

– 7 –
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Equations (2.25)–(2.27) together with the sum-rule (2.31) and the identity (2.19) form a

complete set of equations for solving G< and the pole functions A andGH exactly, when the

interactions (a scheme to compute Σ) and the mass profiles are specified. In practice these

equations are too hard to be solved in their full generality, and sevaral approximations

are needed to find a solvable set of equations. It is not clear a priori that a tractable

approximation scheme that is general enough to treat information on quantum coherence

simultaneously with interactions can be found. The novelty of this work is to show that

such a scheme indeed does exist. We shall now proceed to build this scheme by first

constructing the full phase space structure of the free 2-point functions.

3. Free fields

In the noninteracting case the equation (2.27) for the dynamical function G< decouples

from the pole functions. In this case, the Hermitian Wightmann function, defined as

Ḡ<(u, v) ≡ iG<(u, v)γ0. (3.1)

obeys the free Kadanoff-Baym equation in the mixed representation:
(

k0 +
i

2
∂t − ~α ·

(

~k − i

2
~∇
)

− γ0m̂0 − iγ0γ5m̂5

)

Ḡ<(k, x) = 0 , (3.2)

which is obtained from eq. (2.27) by setting Σab = 0 and multiplying from both sides by

γ0. In a spatially homogenous case the spatial gradient terms vanish and, correspondingly,

the helicity is a good quantum number. Mathematically this follows from the fact that the

helicity operator ĥ = k̂ · ~S = k̂ · γ0~γγ5, where k̂ ≡ ~k/|~k|, commutes with the differential

operator of eq. (3.2) in the homogenous limit. This fact is particularily transparent in Weyl

basis where the gamma-matrices are given by the following direct product expressions:

γ0 = ρ1 ⊗ 1 , ~α = −ρ3 ⊗ ~σ and γ5 = −ρ3 ⊗ 1 . (3.3)

Here both ρi and σi are the usual Pauli matrices such that the ρ-matrices refer to the

chiral- and σ-matrices to the spin-degrees of freedom. In this representation the helicity

operator is just ĥ = 1⊗ k̂ · ~σ and it’s commutativity with ~α · ~k, γ0 and γ5 is evident. As a

result one can introduce a decomposition of Ḡ< in the helicity basis:

Ḡ<
h ≡ g<

h ⊗ 1

2
(1 + hk̂ · ~σ), (3.4)

where g<
h are unknown Hermitian 2× 2 matrices (for h = ±1) in chiral indices. When this

decomposition is inserted into eq. (3.2) one obtains an equation
(

k0 +
i

2
∂t

)

g<
h = Ĥg<

h , with Ĥ ≡ −h|~k|ρ3 + m̂0ρ
1 − m̂5ρ

2 . (3.5)

Even this equation would be impossible to solve exactly, because the mass operators m̂0,5

involve gradients to arbitrary orders. In the mean field limit the gradients drop out however,

and Ĥ becomes a local Hermitian Hamilton operator

Ĥ → −h|~k|ρ3 +mRρ
1 +mIρ

2 =

(

−h|~k| m

m∗ h|~k|

)

≡ H . (3.6)

– 8 –
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One can always decompose the equation (3.5) into two distinct sets of equations based on

hermiticity. In the mean field limit, where H = H†, the Hermitian (H) and anti-Hermitian

(AH) parts become:

(H) : 2k0g
<
h = {H, g<

h } , (AH) : i∂tg
<
h = [H, g<

h ] . (3.7)

respectively. Note that (H)-equation is an algebraic matrix equation because it does not

contain any time derivatives. It will give rise to phase space constraints for the components

of g<
h , as will be shown in detail in the following subsection. The (AH)-equation in (3.7)

on the other hand contains an explicit time derivative of g<
h and is thus called “kinetic

equation”. This equation clearly has the standard form of the equation of motion of a

density matrix in the Schrödinger picture. Indeed, it is easy to see that in the homogenous

case the Dirac equation for the wave function ψ = (Lh, Rh) (displaying only the nontrivial

chiral components) of a given helicity h becomes just

i∂tψ = Hψ , (3.8)

where H is given by the mean field limit eq. (3.6). Given eq. (3.8) the equation of motion

of the form (AH)-equation in (3.7) follows immediately for ρ ≡ ψψ†. The Hamiltonian H

clearly has eigenvalues corresponding to free particle and antiparticle states: k0 = ±ωk =

±(~k2 + |m|2)1/2, and eq. (3.8) describes the mixing of these states in the case of a time

dependent mass term. Despite the apparent similarities to the Dirac equation approach,

equations (3.7) are mathematically very different from eq. (3.8). Indeed, it turns out that

the (H)-equations impose a singular shell structure for g<
h that prevents us from interpreting

it directly as a physical density matrix and which consequently makes the (AH)-equation

meaningless before a sensible integration procedure is defined.

3.1 Shell structure

The (H)-equation (3.7) is most conveniently discussed in the Bloch-representation for g<
h :

g<
h ≡ 1

2

(

gh
0 + gh

i ρ
i
)

, (3.9)

where gh
α are real-valued functions, because of the hermiticity of g<

h . In the Bloch-

representation (3.9) the (H)-equation (3.7) decomposes into the following four real-valued

“constraint equations” (CE):

k0g
h
0 + h|~k|gh

3 −mRg
h
1 +mIg

h
2 = 0

k0g
h
3 + h|~k|gh

0 = 0

k0g
h
1 −mRg

h
0 = 0

k0g
h
2 +mIg

h
0 = 0 . (3.10)

This set of linear homogeneos equations can be written as an equation Bαβg
h
β = 0, where

the coefficient matrix is (index ordering is here defined as α = 0, 3, 1, 2):

B =











k0 h|~k| −mR mI

h|~k| k0 0 0

−mR 0 k0 0

mI 0 0 k0











. (3.11)
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A homogeneous matrix equation may have a nonzero solution only when the determinant

of the matrix vanishes. Here the determinant is easily evaluated to give:

det(B) =
(

k2
0 − ~k2 − |m|2

)

k2
0 . (3.12)

The vanishing of the determinant (3.12) yields two different classes of spectral solutions

with different dispersion relations. First, there are the usual mass-shell solutions with

k2
0 − ~k2 − |m|2 = 0, but we find also new k0 = 0-shell solutions. These solutions turn out

to be the way the quantum coherence effects are introduced in the present approach. Let

us next examine the matrix-stucture of these spectral solutions.

3.1.1 k0 6= 0 -solutions; free particle mass-shell

Let us first assume that k0 6= 0. Then the constraint equations (3.10) clearly have the

solution:

gh
3 = −h|

~k|
k0

gh
0 , gh

1 =
mR

k0
gh
0 , gh

2 = −mI

k0
gh
0 , (3.13)

and

(k2
0 − ~k2 − |m|2)gh

0 = 0. (3.14)

Equation (3.14) has the spectral solution

gh
0 (k0, |~k|; t) = 4π fh

sk0
(|~k|, t)|k0| δ(k2 − |m|2)

= 2π fh
sk0

(|~k|, t) δ(k0 − sk0

√

~k2 + |m|2) , (3.15)

where sk0
≡ sgn(k0). So these solutions indeed live on the energy-momentum mass-shell

corresponding to the dispersion relation

k0 = ±ωk ≡ ±
√

~k2 + |m|2. (3.16)

Now, using (3.13) and (3.15) we can write the mass-shell contribution for the full chiral

g<
h -matrix as follows:

g<
h,m−s(k0, |~k|; t) = 2πfh

sk0
(|~k|, t)|k0|

(

1 − h|~k|/k0 m/k0

m∗/k0 1 + h|~k|/k0

)

δ(k2 − |m|2). (3.17)

This solution clearly describes either a particle or an antiparticle eigenstate of helicity h

and momentum ~k.

3.1.2 k0 = 0-solutions

Setting k0 = 0 in the first place we find out that equations (3.10) have a new class of

solutions, which obey the relations

gh
3 = h

mR

|~k|
gh
1 − h

mI

|~k|
gh
2

gh
0 = 0, (3.18)
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while the components gh
1,2 are unconstrained. The corresponding spectral solution is then

g<
h,0−s(k0, |~k|; t) = π

[

fh
1 (|~k|, t)

(

hmR/|~k| 1

1 −hmR/|~k|

)

+ fh
2 (|~k|, t)

(

−hmI/|~k| −i
i hmI/|~k|

)]

δ(k0) , (3.19)

where fh
1 (|~k|, t) and fh

2 (|~k|, t) are new unknown real functions. These solutions live on the

k0 = 0-shell, and they cannot be related to particles and antiparticles alone, since those

should have energies k0 = ±ωk respectively. On the other hand one would expect that the

density matrix should somehow contain the information of the quantum coherence between

the particles and antiparticles, just as does the corresponding Dirac equation. Thus we

make a natural interpretation: the additional k0 = 0-solutions (3.19) describe the quantum

coherence between particles and antiparticles with same helicity h and opposite momenta.

Combining the solutions (3.17) and (3.19) gives the most complete solution that sat-

isfies the constraint equations (3.10) for a given helicity h and momentum |~k|:

g<
h (k0, |~k|; t) = g<

h,m−s(k0, |~k|; t) + g<
h,0−s(k0, |~k|; t)

= 2πfh
sk0

(|~k|, t)|k0|
(

1 − h|~k|/k0 m/k0

m∗/k0 1 + h|~k|/k0

)

δ(k2 − |m|2).

+π

[

fh
1 (|~k|, t)

(

hmR/|~k| 1

1 −hmR/|~k|

)

+ fh
2 (|~k|, t)

(

−hmI/|~k| −i
i hmI/|~k|

)]

δ(k0) . (3.20)

This solution contains both particle and antiparticle states as well as their coherence in

separate singular shells in the phase space, as we promised. The solution (3.20) is a

distribution which is best understood as a functional phase space measure, parametrized

by weight functions that must be the real physical objects whose evolution we are interested

in. It is clear that setting the form (3.20) directly into the (AH)-equation in (3.7) does not

lead into a sensible equation of motion however. Before discussing this problem further,

we shall first discuss the spectral structure of the pole functions A and GH .

3.2 Spectral function and GH

In the noninteracting case the equation of motion for the spectral function A eq. (2.25)

is identical to that for G<. As a result, the most general solution for A is of the form of

eq. (3.4):

Aγ0 =
∑

h

ah ⊗ 1

2
(1 + hk̂ · ~σ) , (3.21)

where the chiral matrix ah is identical to the most general solution (3.20) for g<
h , with four

yet undefined spectral on-shell functions fhA
α for both helicities. However, the spectral
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function must in addition obey the sum-rule eq. (2.31). This is enough to completely fix

the values of all four on-shell functions:

fhA
± =

1

2
and fhA

1,2 = 0 . (3.22)

for both helicities. With these values the full solution for A becomes:

A = πsgn(k0)(k/ +mR − iγ5mI)δ(k
2 − |m|2) . (3.23)

This is just the familiar result for the spectral function in thermal quasiparticle limit (see for

example [12]). The spectral function is now completely determined, and it doesn’t contain

any dynamics at all. Especially, it does not have any contribution from the k0 = 0-shell

describing the coherence between particles and antiparticles. This is what we should expect,

since coherence is a dynamic phenomenon, so it should not show up in the measure of the

one-particle phase space. Moreover, it should be vanishing in the statistical equilibrium

limit.

For completeness we consider also the pole-function GH in the noninteracting case,

although we shall not need this function later in the paper. From (2.26) we have
(

k0 +
i

2
∂t − ~α · (~k − i

2
~∇) − γ0m̂0 − iγ0γ5m̂5

)

ḠH = 1 , (3.24)

where again ḠH = GHγ0. The only difference between this equation and the corresponding

equations for Ḡ< and Aγ0 is the factor of unity on the right hand side. So we can again

make the decomposition

ḠH =
∑

h

gh
H ⊗ 1

2
(1 + hk̂ · ~σ) , (3.25)

rewrite (3.24) in component form and separate the equations to constraints and kinetic

equations. The only difference in these equations for gh
H with respect to those for g<

h

occurs in the first constraint equation, which now becomes

k0g
h
H0 + h|~k|gh

H3 −mRg
h
H1 +mIg

h
H2 = 1 . (3.26)

All the other component equations are identical to those for g<
h in (3.10). It is straightfor-

ward to solve gh
Hi in terms of gh

H0, and putting these back to (3.26) gives

(k2
0 − ~k2 − |m|2)gs

H0 = 1 . (3.27)

Now, if we were careful in keeping the ǫ-factors through our computation, we would have

found that the function gh
H0 solving the equation (3.27) is in fact the principal part distri-

bution

gh
H0 = PP

1

k2 − |m|2 . (3.28)

It is again straightforward to show that the corresponding 4 × 4-function is given by

GH = (k/ +mR − iγ5mI)PP
1

k2 − |m|2 . (3.29)

This form saturates the (momentum space equivalent of the) spectral relation (2.15) be-

tween GH and A and hence is the complete solution for GH in the noninteracting mean

field limit. The solutions (3.23) and (3.29) guarantee that also the retarded and advanced

propagators Gr,a do not contain any contribution from the coherence solutions.
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3.3 Equilibrium limit for G<,>

The coherence solutions are also excluded from the dynamical functions in the thermal

limit. First note that for free fields the equation of motion, and hence the solution, for G>

is identical in form to that for G<. However, the a priori independent distributions fh <,>
sk0

in functions G< and G> are constrained by the matrix relation (2.14): G> +G< = −2iA.

(Note that we drop the <,>-indices on fh
α-functions everywhere where there is no danger

of confusion.) This implies that

fh<
sk0

+ fh>
sk0

= 1 and fh <
1,2 + fh >

1,2 = 0 . (3.30)

These relations hold generically as long as the spectral solutions are valid. Furthermore,

in the thermal equilibrium limit functions G< and G> are related by the Kubo-Martin-

Schwinger (KMS) boundary condition [17]:2

G>
eq(t) ≡ G<

eq(t+ iβ) ⇒ G>
eq(k0) = eβk0G<

eq(k0) . (3.31)

This matrix condition is strong enough to impose the vanishing of the coherence functions,

fh <,>
1,2 = 0 (3.32)

and setting the mass-shell distributions to

fh <
sk0

= neq(k0)

fh >
sk0

= 1 − neq(k0) , (3.33)

where neq(k0) = 1/(eβk0 +1) is the usual Fermi-Dirac distribution. Using solutions (3.32)–

(3.33) in eq. (3.20), and summing over the helicities in the decomposition given by eq. (3.4)

one finds that:

iG<
eq = 2πsgn(k0)(k/ +mR − iγ5mI)neq(k0) δ(k

2 − |m|2)
iG>

eq = 2πsgn(k0)(k/ +mR − iγ5mI) (1 − neq(k0)) δ(k
2 − |m|2) , (3.34)

which are recognized as the standard thermal equilibrium propagators [17]. Generally, in

our treatment, the functions fh <
α (|~k|, t) are time-dependent and carry information of both

quantum coherence and of statistical out-of-equilibrium conditions.

4. Weighted density matrix

The dynamical evolution of a free system should be described by the kinetic (AH)-equation

in (3.7), but the singular structure of g<
h (k0, |~k|; t) complicates the matters. Since distribu-

tions are only well defined inside an integral, the equation for g<
h must be integrated one

way or the other to get sensible evolution equations for the on-shell functions f±,1,2, which

are the objects that must carry the physical information about the system. The necessity

2Our sign-convention for G< is opposite to the usual one, see eqs. (2.5), (2.8), hence the KMS-condition

does not involve an explicit - sign.
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of such an integration is actually something to be expected, because we can never have

a complete information about the variables that define a system under consideration. To

quantify this thinking, we introduce the physical density matrix as a weighted average of

the original distribution matrix g<
h [7]:

ρW(k0, |~k|, h; t) ≡
∑

h′

∫

dk′0
2π

d3k′

(2π)3
W(k0, |~k|, h || k′0, |~k′|, h′ ; t) g<

h′(k
′
0, |~k′|; t) , (4.1)

where the weight function W(k0, |~k|, h || k′0, |~k|′, h′ ; t) encodes our knowledge about the

energy, momentum and helicity variables of the state. Our task is now to find out the

equations of motion for this weighted density matrix, and consequently for the on-shell

functions f±,1,2. For example, a complete information of the energy the momentum and

the helicity of the state immediately renders the evolution of appropriate density matrix

trivial one: ∂tρ = 0, whose solutions are just the constant freely propagating helicity

eigenstates [7].

For a more interesting example, where the quantum coherence effects become im-

portant, consider a case where we have a precise information of the helicity and size of

momentum, but know nothing about the energy. Effectively this means that we cannot

differentiate between particles and antiparticles with the same helicity and energy. This

is the appropriate situation for computing the particle production during preheating for

example, to be discussed in detail in the section 7.1 below. The weight function describing

this situation is just

W1 =
(2π)3

4π~k′
2 δ(|~k| − |~k′|) δh,h′ . (4.2)

In this case the weighted density matrix ρW1
:

ρW1
(k0, |~k|, h; t) =

∑

h′

∫

dk′0
2π

d3k′

(2π)3
(2π)3

4π~k′
2 δ(|~k| − |~k′|) δh,h′ g<

h′(k
′
0, |~k′|; t)

=

∫

dk0

2π
g<
h (k0, |~k|; t) ≡ ρh(|~k|; t) ≡ 〈g<

h 〉 , (4.3)

obeys the evolution equation of same form as g<
h :

∂tρh = −i[H, ρh] . (4.4)

Here the commutator [H, ρh] does not vanish, giving rise to a nontrivial time dependence for

the nonsingular weighted density matrix ρh. In particular, the k0 = 0-shell functions f1,2

are now directly related to the components of the density matrix and affect the evolution of

the mass-shell functions f± as well. Using the Bloch-representation ρh ≡ 1
2(〈gh

0 〉+ 〈~gh〉 ·~σ),

we have the following relations between 〈gh
0 〉 and f±,1,2:

〈gh
0 〉 = fh

+ + fh
−

〈gh
1 〉 =

mR

ω
(fh

+ − fh
−) + fh

1

〈gh
2 〉 = −mI

ω
(fh

+ − fh
−) + fh

2

〈gh
3 〉 = −h |

~k|
ω

(fh
+ − fh

−) + h

(

mR

|~k|
fh
1 − mI

|~k|
fh
2

)

, (4.5)
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where ω ≡
√

~k2 + |m|2. Note that with the weight (4.2), the physical density matrix ρh is

just the zeroth moment of the original distribution matrix g<
h with respect to the energy.

5. Physical quantities

Equations (4.5) can be inverted to obtain fh
±,1,2 in terms of moment Bloch functions 〈gh

α〉.
We are especially interested in the expressions for the mass-shell distributions f±, defined

in eq. (3.15), which in our approach are directly related to the particle and antiparticle

number densities. Indeed, according to Feynman-Stuckelberg interpretation the phase-

space particle number density is n ≡ f+, while for fermionic antiparticles n̄ ≡ 1 − f−.

With these identifications, using the inverse relations of eq. (4.5) we find that for a given

3-momentum ~k and helicity h the out-of-equilibrium particle and antiparticle numbers can

be written as:

n~kh
=

1

2ω

(

−h|~k|〈gh
3 〉 +mR〈gh

1 〉 −mI〈gh
2 〉
)

+
1

2
〈gh

0 〉

n̄~kh
=

1

2ω

(

−h|~k|〈gh
3 〉 +mR〈gh

1 〉 −mI〈gh
2 〉
)

− 1

2
〈gh

0 〉 + 1 . (5.1)

Setting Tr(ρh) = 〈gh
0 〉 ≡ 13 these expressions reduce to the ones obtained in ref. [2],4 where

they were derived using the solutions to a Dirac equation and a Bogolyubov transformation

to diagonalize the fermionic Hamiltonian. Indeed, this definition of the particle number

in terms of the moment functions was one of the main results of the paper [2]. Here the

definition of the particle number is trivial, and we introduced the expressions (5.1) merely

to show that our definition does agree with the other approach. In a future work [8], we

shall show that in the bosonic case our particle number differs from the one obtained in

ref. [2], but is consistent with the definition of the ref. [18].

It is also interesting to see what kind of expressions other physical quantities like energy

density and pressure will have in terms of the components 〈gh
α〉 or the on-shell functions

f±,1,2. These quantities are defined as the ensemble averages the energy momentum tensor5

θµν =
i

4

(

Ψ̄γµ∂νΨ − ∂νΨ̄γµΨ

)

+ µ↔ ν (5.2)

and so, for example for the energy density we get

〈H(x)〉 = 〈θ00(x)〉 =

∫

d4k

(2π)4
Tr
[(

~γ · ~k +mR + imIγ
5
)

iG<(k, t)
]

=
∑

h

∫

d3k

(2π)3

(

−h|~k|〈gh
3 〉 +mR〈gh

1 〉 −mI〈gh
2 〉
)

=
∑

h

∫

d3k

(2π)3
ω~k

(

n~kh + n̄~kh − 1
)

. (5.3)

3Physically this constraint corresponds to setting the chemical potential to zero. Indeed, since 〈gh
0 〉 =

fh
+ + fh

− = n~kh − n̄~kh + 1, we see that setting 〈gh
0 〉 ≡ 1 reduces to n~kh ≡ n̄~kh.

4Different signs of terms involving h and mI are due to a different convention in our definition of the

Hermitian Wightmann function eq. (3.1).
5Here we use the symmetric (Belinfante) version of energy-momentum tensor [19]. However, the same re-

sults would have been obtained using the canonical tensor T µν = Ψ̄
ˆ

iγµ∂ν − gµν
`

iγµ∂µ − mR − iγ5mI

´˜

Ψ.
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According to expectations the result is simply a sum of free particle and antiparticle con-

tributions. The last term in the last row is the sum of corresponding vacuum energies. For

the pressure we get instead

〈P (x)〉 = 〈θii(x)〉 =

∫

d4k

(2π)4
Tr
[

γiki iG<(k, t)
]

=
∑

h

∫

d3k

(2π)3
1

3

(

−h|~k|〈gh
3 〉
)

=
∑

h

∫

d3k

(2π)3
1

3

(

~k2

ω

(

n~kh
+ n̄~kh

− 1
)

−mRf
h
1 +mIf

h
2

)

. (5.4)

Now we see that in addition to normal free particle and antiparticle terms there is an explicit

contribution from the coherence shell functions f1,2, signalling that at the quantum level

the pressure is different from the statistical one. In most cases the quantum effect would

be unobservable however, since the coherence functions f1,2 are typically oscillatory with

microscopic time-scales ∆tosc ∼ 1/ω, so that the classical thermodynamical pressure arises

from eq. (5.4) when it is averaged out over any time-scales exceeding the quantum scale

∆tosc.

6. Interacting fields

Having set up the density matrix formalism for treating quantum coherence phenomena in

classical backgrounds, we now wish to extend our work to include interactions. To this end

we must use the full Kadanoff-Baym equations (2.25)–(2.27). In their complete generality

these equations couple nonlinearily the three Green’s functions G<, A and GH . Solving

these equations simultaneously would be an overwhelmingly difficult problem however, and

we shall adopt a series of approximations to extract the relevant physics in what becomes

the quasiparticle limit. The key idea in our approach is to divide the problem into two

parts. We first need to find a reasonable approximation for the phase space of the problem

in terms of on-shell distributions as we did earlier in the case of the free fields. Second,

we must find the equations of motion for the on-shell distribution functions including

interactions. Looking at equations (2.25)–(2.27) one immediately sees that the couplings

between equations due to terms involving the pole function GH are causing most problems

along the way to any Boltzmann-equation type approximations for the problem. If these

can be neglected, the equations for G< and A will decouple and one does not need to

solve GH at all. Fortunately, as we shall see, this indeed is a reasonable approximation

in the weak coupling limit. As a result of this approximation A and G< will continue to

have on-shell solutions, which allows us to go through the procedure leading to our density

matrix formalism, yet including the effects of decohering interactions.

6.1 Quasiparticle approximation

Let us first consider the weak coupling approximation for the pole equations (2.25)—(2.26).
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To zeroth order in gradients, but for arbitrary ΣH and Γ we obtain:

GH =
1

1 + (G0Γ)2
G0

A =
1

1 + (G0Γ)2
G0ΓG0 , (6.1)

where G0 now includes the real part of the self-energy ΣH :

G−1
0 = k/ −mR − imIγ

5 − ΣH , (6.2)

and Γ is defined in equation (2.16). We see that A no more has a spectral solution, and

the phase space is truly 4-dimensional. However, A clearly reduces to a spectral form in

the limit Γ → 0:6

A → π sgn(k0)δ(G
−1
0 )

= π sgn(k0)G0 det(G−1
0 ) δ(det(G−1

0 )), (6.3)

where the determinant inside the delta-function now gives rise to a modified dispersion

relation:

det(k/ −mR − imIγ
5 − ΣH) = 0. (6.4)

For the pole-function GH we would obviously get the corresponding principal value as in

noninteracting case (see section 3.2). The limit of taking Γ → 0, while keeping ΣH finite

is just the well known quasiparticle approximation. It is often a reasonable approximation

to be made in the weak coupling limit. Technically one should require that ΣH is of lower

order in the coupling constants than is Γ, and this often indeed is the case: for gauge

interactions for example one finds ΣH ∼ g2 and Γ ∼ g4 in the lowest order in the gauge

coupling g. However, even when the coupling hierarchy is not there, the quasiparticle limit

can be a useful first approximation.

6.2 KB-equation with collisions

We now turn our attention to the dynamical equation (2.27), which in the mean field limit

becomes:
(

k/ − i

2
∂/x −mR − imIγ

5 − ΣH

)

G< − Σ<GH = Ccoll , (6.5)

where

Ccoll =
1

2
(Σ>G< − Σ<G>) . (6.6)

Clearly the GH -mixing term prevents eq. (6.5) from providing unique solution for G< even

when the spectral function is known. However, neglecting this term is in fact consistent

with the quasiparticle approximation. One can see this from the fact that eq. (2.25) for

6Note that Γ is in fact a 4×4 matrix operator, so with the limit Γ → 0 we mean that the coupling y → 0.

Actually we have to keep a finite, but arbitrarily small imaginary part in the definitions of propagators,

due to the inclination of the Keldysh path in the complex time plane. Thus in the collisionless limit

Γ → sgn(k0)ǫ14.
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the spectral function A can be obtained as a sum of the evolution equations for G< and

G>, and that the mixing term ∼ ΓGH in this equation arises from the sum of GHΣ<,>-

terms in the equations for G<,>. Since neglecting the Γ-mixing was precisely what defined

the quasiparticle approximation for the pole-equations, corresponding terms should be

discarded in the equations for G<,> as well. Thus, in the quasiparticle and mean field limit

we have

(k/ − i

2
∂/x −mR − imIγ

5 − ΣH)G< = Ccoll . (6.7)

The collision term can be written in terms of Γ and A as follows:

Ccoll = −iΓG< + iΣ<A , (6.8)

so that given a solution for A equation (6.7) can be solved in weak coupling limit to give

G<. The overall strategy is the same as before: one first divides equations into kinetic

equations and constraints. Consistency with the quasiparticle approximation requires that

one must neglect all collision terms in the constraint equations, since including them would

give corrections that are of the same order as terms neglected in quasiparticle approxima-

tion. When this procedure is followed the constraint equations for G< lead to the same

quasiparticle mass-shell solutions for G< as for the spectral function, plus the additional

solutions describing the coherence at k0 = 0-shell, because for G< the latter are not sup-

pressed by the spectral sum-rule. However, our main interest in this paper is to study the

effects of decohering collisions on the quantum coherence of the system. Because these do

not qualitatively depend on the modifications to dispersion relations, we will set ΣH to

zero for simplicity in what follows. This obviously reduces the functions A and GH to their

collisionless limits given in eqs. (3.23), (3.29), and the kinetic equation eventually becomes

simply
(

k0 +
i

2
∂t − ~α ·

(

~k − i

2
~∇
)

− γ0m̂0 − iγ0γ5m̂5

)

Ḡ< = iγ0Ccollγ
0 . (6.9)

Until now our analysis has been entirely independent of the particular type of interactions.

However, it is not possible to analyse the problem further before explicitly defining the

interaction terms. Before doing that we shall notice that whatever the form of the inter-

action, if the self-energies Σ<,> are thermal obeying the Kubo-Martin-Schwinger (KMS)

relation Σ>(k, x) = eβk0Σ<(k, x), the collision term reduces to:

Ccoll = −iΓKMS

(

G< −G<
eq

)

. (6.10)

This follows from the KMS-relation combined with the relation iG<
eq = 2neq(k0)A given

by eqs. (3.23) and (3.34). The form of collision term (6.10) is familiar from relaxation-time

approximation and it yields the relaxation to thermal equilibrium in time scale 1/Γ in the

absence of any driving terms.

After the interactions are specified and an explicit form of Γ is known we can proceed

to write down our equations of motion. These equations will be generalizations of the

equations (3.7) in the free field case. As we mentioned above, the constraint equation (H)

will be untouched because we are working in the quasiparticle mean field limit and we

neglect the term ΣH for simplicity. The kinetic equation (AH) will receive contributions
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from the collision terms however. It is very important to realize, and this can already be

seen from equation (6.9) that as the singular solution for the function G< is introduced into

the kinetic equations, we will encounter projections of the collision term Γ on all different

shells contributing to G<. That is, the external momentum configuration entering to the

evaluation of Γ will depend on the particular shell multiplying it in the collision integral.

In particular, the coherence shells will pick interaction terms with Γ(k0 = 0), which in

general are completely different from the terms involving the usual mass-shell functions.

6.3 Computation of the self-energies

In this subsection we give an explicit evaluation of the self-energy corrections arising from

a specific form of the interaction. This is a rather technical calculation whose results are

particular to the chosen interaction. A reader not interested in these details can skip

this subsection and move directly to the next section where we will continue developing

the kinetic equations given the results from this subsection. We choose to consider the

following left-chiral non-diagonal Yukawa interaction term:

Lint = −y ψ̄Lφ qR + h.c. (6.11)

where ψ is the considered fermion field, q is some other fermion (quark) field and φ is

a complex scalar field. As mentioned before we use the two-particle irreducible (2PI)

action method to calculate the self-energies (2.6). The lowest order 2PI-graph based on

interaction (6.11) is presented in figure 3a, and it gives the contribution

Γ2PI = −|y|2
∫

C
d4u d4vTr [PRGq(u, v)PLG(v, u)] ∆(u, v) , (6.12)

where G, Gq and ∆ are propagators of the considered fermion, quark and scalar field and

the integration is over the Keldysh path. From this we get fermion ψ self-energies:

Σab(u, v) = −iab δΓ2[G]

δGba(v, u)
= i|y|2PRG

ab
q (u, v)PL∆ab(u, v) (6.13)

and in particular7

Σ<,>(u, v) = i|y|2PRG
<,>
q (u, v)PL∆<,>(u, v) . (6.15)

We obviously need these quantities in the mixed representation and after a Wigner trans-

formation the self-energies become:

Σ<,>(k, x) = i|y|2
∫

d4k′

(2π)4
PRG

<,>
q (k′, x)PL∆<,>(k − k′, x) . (6.16)

7The 2PI-formalism is not necessary for obtaining these results. Equivalently with eq. (6.12) one can

directly write down the self-energy with complex time variables:

ΣC(u, v) = i|y|2PRG
q
C(u, v)PL∆C(u, v) , (6.14)

from which (6.13) readily follows by making the appropriate choices for the position of variables on the

time path.
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Figure 3: Diagrams contributing to the 2PI-action and the self-energy at the one loop level due

to interaction (6.11).

To keep things simple, we will now assume that the quark- and scalar distributions appear-

ing in the loop are thermal. The appropriate quark propagators (with real constant mass)

can then be read directly from (3.34):

iG<
q,eq(k) = 2π (k/ +mq) δ(k

2 −m2
q)sgn(k0)neq(k0)

iG>
q,eq(k) = 2π (k/ +mq) δ(k

2 −m2
q)sgn(k0)(1 − neq(k0)) , (6.17)

while the equivalent expressions for the bosonic propagators are [12]

i∆<
eq(k) = 2πδ(k2 −m2

φ)sgn(k0)n
φ
eq(k0)

i∆>
eq(k) = 2πδ(k2 −m2

φ)sgn(k0)(1 + nφ
eq(k0)) , (6.18)

where the thermal fermion and boson distribution functions neq and nφ
eq are

neq(k0) =
1

eβk0 + 1
, nφ

eq(k0) =
1

eβk0 − 1
. (6.19)

In the thermal approximation the explicit x-dependence of the propagators G<,>
q and ∆<,>

drops, and it might appear that also Σ<,> then becomes x-independent. That this is not so

follows from the nontrivial dependence of ∆<,>
eq (k−k′) on the exteral 4-momentum k. When

k enters to the on-shell delta-functions it introduces dependence on the mass of the external

field ψ. Computing Σ<,> is now a simple matter of substituting thermal propagators (6.17)–

(6.18) to the expression for the self energy (6.16) and using the delta-functions to perform

as many of the integrals as possible. Before doing the actual computation let us note

however, that in the thermal limit Σ<,> can only depend on two independent 4-vectors:

kµ and the 4-velocity of the plasma uµ. Given the chiral structure of the interaction the

most general form for any Σab is thus

Σab(k) = (Aab k/ +Bab u/ ) PL , (6.20)

where the isotropy of the thermal distribution implies that functions Aab and Bab can only

depend on k0, |~k|. Note that at this point Σab is actually independent of the external co-

ordinate x; the x-dependence (actually only t-dependence in this paper) is only introduced

through projections to mass shells where the dispersion relation k0 = ±ωk(x) depends on x

through the mass of the ψ-field. Note also that eq. (6.20) is more general than the specific

interaction we are studying here: it is valid for any L-chiral interaction and to any order in

the loop expansion as long as the loop particles are assumed to be thermal. Substituting
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the expressions (6.17)–(6.18) to eq. (6.16) we get, after integration over k′0:

iΣ<(k) = 2π|y|2
∑

±

∫

d3k′

(2π)34ωq
k′ω

φ
k−k′

neq(±ωq
k′)n

φ
eq(k0 ∓ ωq

k′)k/
′
±PL

×
(

δ(k0 ∓ ωq
k′ − ωφ

k−k′) − δ(k0 ∓ ωq
k′ + ωφ

k−k′)
)

, (6.21)

where ωq,φ
p ≡

√

~p2 +m2
q,φ and k′± ≡ (ωq

k′ ,±~k′). The angular integrals in the expres-

sion (6.21) can be further evaluated in spherical coordinates with the result:

Σ<(k) =
[

Σ<
0 γ

0 − Σ<
3 (k̂ · ~γ)

]

PL , (6.22)

where k̂ = ~k/|~k| and iΣ<
0,3 = iΣ<

0,3(k0, |~k|) are real-valued functions of the phase space.

For our present analysis we need to evaluate the self-energies Σ<,> both on the mass-shell

k2
0 − ~k2 = |m(x)|2 as well as on the k0 = 0-shell. On the mass-shell we get:

iΣ<
0 (k0 = ±ωk(x), |~k|) =

|y|2T 2

8π|~k|
|I1(k0, |~k|)| , (6.23)

iΣ<
3 (k0 = ±ωk(x), |~k|) =

|y|2T 2

8π|~k|

[

k0

|~k|

(

|I1(k0, |~k|)| −
|α| |m|2
k2
0

|I0(k0, |~k|)|
)

]

, (6.24)

with

In(k0, |~k|) = θ(λ)

∫ α+β

α−β
dy yn 1

(ey + 1)(ek0/T−y − 1)
(6.25)

and

α =
|m|2 +m2

q −m2
φ

2|m|2
k0

T
=

√
sE∗k0

|m|2T

β =
λ1/2(|m|2,m2

q ,m
2
φ)

2|m|2
|~k|
T

=

√
sp∗|~k|
|m|2T , (6.26)

where ωk ≡
√

~k2 + |m|2 and E∗ and p∗ are the energy and momentum of the decay prod-

ucts in the decay frame,
√
s is the invariant mass of the decaying (heaviest) particle and

λ(a, b, c) = (a + b − c)2 − 4bc is the usual kinematic phase space function. The peculiar

appearance of the Heavyside step-function with the argument λ ≡ λ(|m|2,m2
q ,m

2
φ) causes

these expressions to automatically take care of the correct mass hierarchy of the fields; the

mass m = m(x) may be varying in spacetime, so ψ can for example change from being the

lightest to the heaviest of the three fields. On the k0 = 0-shell we get instead:

iΣ<
0 (k0 = 0, |~k|) =

|y|2T 2

8π|~k|

∫ ∞

λ1/2

2|~k|T

dy
y

sinh(y)
(6.27)

iΣ<
3 (k0 = 0, |~k|) = 0 . (6.28)

Now λ ≥ 0 always so there is no need for an explicit step-function. One crucial difference

between the mass-shell and the k0 = 0-shell self energies is that the latter are completely
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x-independent while the former may be x-dependent, because of the possibly x-dependent

mass, as mentioned earlier.

Because we are computing Σab’s in the thermal limit, the expression for Σ> can be

obtained from that for Σ< by use of the Kubo-Martin-Schwinger (KMS) relation:

Σ>(k) = eβk0Σ<(k) . (6.29)

This relation can be seen to emerge from (6.21), where we should obtain Σ< → Σ> by

replacing nq
eq → 1− nq

eq and nφ
eq → 1 + nφ

eq. KMS-relation (6.29) follows then immediately

by use of the relations 1−neq(k0) = eβk0neq(k0) and 1+nφ
eq(k0) = eβk0nφ

eq(k0). Self-energy

components Σi
0,3 of course obey the KMS-relation separately. Moreover, we find that

Γ(k) =
i

2
(1 + eβk0)Σ<(k) . (6.30)

Expressions (6.22) and (6.30) complete the computation of all required self-energy functions

needed for the further analysis of eq. (6.9).

6.4 Evolution equation for the density matrix

Using the particular form of the self energy (6.22) and the KMS-relation (6.30), which yield

a thermal collision term of the type eq. (6.10), and the helicity block-diagonal decomposi-

tion (3.4) for Ḡ<, the equation (6.9) reduces to the following matrix equation for the chiral

part g<
h :

(

k0 +
i

2
∂t −H

)

g<
h = −iD

(

g<
h − (g<

h )eq
)

, (6.31)

where H = −h|~k|ρ3 +mRρ
1 −mIρ

2, as earlier,

D ≡ 1

2
(1 + ρ3) Γh with Γh ≡ Γ0 − hΓ3 (6.32)

and (g<
h )eq is the thermal equilibrium limit of g<

h defined in eq. (3.20). Taking the Hermitian

and anti-Hermitian parts of equation (6.31), and neglecting collisions in the Hermitian

equation, consistently with the quasiparticle approximation, we find a generalization of

equations (3.7) to the case with collisions:

(H) : 2k0g
<
h = {H, g<

h }
(AH) : ∂tg

<
h = −i[H, g<

h ] −
{

D, g<
h − (g<

h )eq
}

. (6.33)

The only difference to the free field case is the appearance of an anticommutator in the

anti-Hermitian equation containing the interaction matrix D. The precise form of the

matrix D in chiral indices will depend on the form of the interactions, but the generic

form of the equations in (6.33) including an anticommutator with a generic matrix D is

universal to the quasiparticle mean field limit when the self-energy is computed in thermal

approximation. The simple form of D in eq. (6.32) reflects the chirality of the interaction:

(1 + ρ3)/2 is just the 2-dimensional version of the left-chirality projector.
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Just as in the noninteracting case, the (AH)-equation is ill-defined without an inte-

gration procedure. Here we are interested in the evolution of the weighted density matrix

relevant for the particle production during preheating in the homogenous time-dependent

background. The momentum and helicity remain to be good quantum numbers even in

the presence of the interactions, and so we can take our physical density matrix to be

diagonal in these variables. Furthermore, since we have no a priori information of the

energy of the relevant solutions we impose a flat weight on the energy variable. That is,

we integrate the (AH)-equation in (6.33) with the weight (4.2) introduced in the section 4:

W1 = (2π)3

4π~k′
2 δ(|~k| − |~k′|) δh,h′ . After some manipulations we get the new equation of motion

for the physical density matrix ρh defined in eq. (4.3) including interactions:

∂tρh = −i[H, ρh] − Ig , (6.34)

where

Ig ≡
∫

dk0

2π

{

D , g<
h − (g<

h )eq
}

= Γm0

(

(f0 − f eq
0 ) − h k

ω (f3 − f eq
3 ) m

2ω (f3 − f eq
3 )

m∗

2ω (f3 − f eq
3 ) 0

)

−hΓm3

(

(f3 − f eq
3 ) − h k

ω (f0 − f eq
0 ) m

2ω (f0 − f eq
0 )

m∗

2ω (f0 − f eq
0 ) 0

)

+ Γ00

(

hmR
k f1 − hmI

k f2
1
2(f1 − if2)

1
2(f1 + if2) 0

)

, (6.35)

where we use shorthand notations f0 ≡ f+ + f− and f3 ≡ f+ − f−, and similarly for f eq
0,3

with f eq
± ≡ neq(±ω). Yet we have denoted k ≡ |~k|, and we have dropped the helicity index

h in the superscripts of all fα for convenience. The Γ-functions appearing as coefficients

are now having contributions from different shells on the phase space as we predicted at

the end of the section 6.2. We have used the definitions:

Γm(0,3)(|~k|, t) ≡ Γ0,3(k0 = ω(t), |~k|) (positive mass-shell)

Γ00(|~k|) ≡ Γ0(k0 = 0, |~k|) (k0 = 0 -shell) . (6.36)

These are the only independent functions, since Γ on the negative mass-shell is related to

that on the positive with Γ0,3(−k0, |~k|) = ±Γ0,3(k0, |~k|). Further, Γ3 vanishes on the k0 = 0

-shell. It is because of the different values of Γ-functions in different phase space shells,

that the integrated equation of motion (6.34) cannot be written in an equally simple matrix

form as the original one (6.33). We have written the collision integral (6.35) in terms of

the on-shell functions fα to get the simplest possible expression. Of course, in order to

perform any practical calculations one has to use the relations between ρij and fα, which

can be found using the relations (4.5). In fact, in our numerical calculations in sections 7.1

and 7.2 we found it easiest to express all quantities in terms of the Bloch-components 〈gh
α〉.

Again, the form (6.34) is generic for a density matrix defined by the weight (4.2), but the
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precise form Ig strongly depends on the interaction; the more complicated the interaction,

the messier Ig becomes. However, there is always a well defined matrix expression for Ig
which in the thermal limit is linear in the on-shell functions, involving projections of the

interaction matrix components on the positive mass shell and the k0 = 0-shell.

The generic features of the thermalization and decoherence effects due to collisions

are a bit obscure in eq. (6.34) because of the complex matrix stucture of the collision

integral (6.35). They become much simpler if one looks directly at the evolution equations

of the on-shell functions fα in the constant mass limit. Using the relations (4.5) to express

ρij in terms of fα, we find that in this limit:

∂tf± = −
(

1 − h
k

ω

)

Γm0(f± − f eq
± ) + . . .

∂tf1 = −2h

[

−kf2 +mI

(

mR

k
f1 −

mI

k
f2

)]

− Γ00f1 + . . .

∂tf2 = −2h

[

kf1 +mR

(

mR

k
f1 −

mI

k
f2

)]

− Γ00f2 + . . . , (6.37)

where we have written down only the diagonal interaction terms. Since all of those are

negative (Γm0,Γ00 ≥ 0), we can immediately see the tendency of interactions to thermalize

the mass-shell functions by setting f± → f eq
± as well as to give rise to decoherence f1,2 → 0.

The latter effect in particular gives a smooth damping of the quantum coherence as a result

of collisions over a characteristic time scale 1/Γ00.

7. Applications

Let us next study the effects of collisions numerically in two different physical examples.

First we consider particle production at the preheating of inflation including the effects of

collisions on the coherent particle number creation. Second, we study the approach to the

thermal equilibrium of a quantum system including both thermalization and decoherence

effects due to collisions. In both of these examples the 3-momentum ~k and the helicity h

are good quantum numbers so that the weight function W1 defined in eq. (4.2), and the

resulting equations (6.34)–(6.36) with relations (4.5) are the appropriate one to use in these

calculations.

7.1 Particle production at preheating

As our first application we consider the particle production at the preheating stage at the

end of the inflation, where a time-dependent fermionic mass is generated by an oscillating

inflaton condensate. This system is appropriately described by equations (6.34)–(6.36),

assuming that interactions are modelled by our left-chiral Lagrangian eq. (6.11). We found

it most convenient to write the equations entirely in terms of the moment Bloch functions

〈gh
α〉 in the code, using relations (4.5), and by computing the particle and antiparticle

numbers in the end through eqs. (5.1). This preheating problem was considered recently

in ref. [2] in the collisionless limit, and to facilitate the comparison, we will adopt their

model for the oscillation of the inflaton condensate. A simple cosine function for inflaton
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Figure 4: Shown is the mean field number density n~kh of produced fermions as a function of

τ ≡ ωϕt for negative helicity state h = −1 in free case (thick black line). Also shown is (thin dotted

blue line) a function fh
c ≡ ((fh

1 )2 + (fh
2 )2)1/2, which describes the overall amount of correlation

between fermions and antifermions. Effects of inflaton oscillation are modeled by varying mass

m(t) = (10+15 cos(2ωϕt)+i sin(2ωϕt))|~k| where ωϕ = |~k| is the frequency of the inflaton oscillation.

At τ = 0 the fermion system is taken to be an uncorrelated vacuum state.

gives rise to the following fermionic mass function (here t corresponds to a time coordinate

in the conformal frame [2]):

m(t) = m0 +A cos(2ωϕt) + iB sin(2ωϕt), (7.1)

where m0, A, B and ωϕ (the inflaton oscillation frequency) are real constants. Let us

first consider the noninteracting case with Γ = 0. We assume that there is no initial

chemical potential so that n~kh
≡ n̄~kh

and 〈gh
0 〉 ≡ 1. This initial condition is preserved

throughout the free field evolution, since by eq. (4.4) one can show that ∂t〈gh
0 〉 = 0. The

results of our calculations for helicity h = −1 are presented in figure 4. We see that

the produced particle number increases steadily as a function of time. This increase takes

place at the resonance peak areas while between the peaks the particle number is essentially

constant. To arrive to this picture with a parametrical resonance needs some fine-tuning

between the parameters of mass oscillation and the size of momentum |~k| and helicity h;

indeed for the opposite helicity h = +1 with the otherwise same parameters we would

get a completely different figure without a clear resonance behavior. This evolution of

the particle number agrees with the results in ref. [2]. We show also the evolution of the

coherence by plotting a function fc ≡
√

f2
1 + f2

2 (dotted blue line) in figure 4. We see

that the particle production is accompanied by a steady growth of coherence. Most of

the growth takes place at the resonance peaks, whereas outside the peaks the coherence

oscillates with a constant amplitude. Already after a few resonance crossings the coherence

has saturated to a maximum.

Let us next consider the case with collisions, so we have Γ 6= 0. Physically our model

interaction (6.11) corresponds to decays (and inverse decays) of the inflaton generated
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Figure 5: The mean field number density n~kh of fermions as a function of τ for an interacting field

(thick black line), in same setting as in figure 4. Thin dotted blue line again shows the coherence

function fh
c giving the correlation between fermion and antifermion fields. The interaction is taken

to be of the form computed in the section 6.3, with a thermal background in temperature T = |~k|
and parameters y = 5,mq = 0.02|~k| and mφ = 0.1|~k|.

field ψ to some lighter fermions and scalars that could be taken to be the standard model

particles. Including transport equations also to these states (and the ones they couple

to), and solving the whole problem with the momentum dependence, one could build an

entire network of equations necessary for a realistic simulation of the particle production

and thermalization at the preheating. Here our goals are more modest, and we only wish

to study how the collisions affect the evolution of the particle number and coherence. As

before we will set the initial chemical potential to zero so that n~kh
≡ n̄~kh

and 〈gh
0 〉 ≡ 1 in

the beginning. However, now this condition is not preserved, since conservation of 〈gh
0 〉 is

not respected by the collision terms. We show the evolution of the particle number and

the coherence for a particular parametrization of the collision term in figure 5. Apart from

including the interactions we are using the same parametrization as in the noninteracting

case shown in figure 4. The difference between the interacting and noninteracting cases

is quite dramatic. We see that with interactions the particle number drops between the

resonance peaks, only to be regenerated again in the next resonance crossing. The drop in

the particle number obviously results from the decay of the unstable particles, so that a

steady flux of standard model particles (and antiparticles) is created through the resonance

production and decay of the ψ-states. Also the growth of the coherence is damped in

comparision with the noninteracting case, and both the particle number and coherence

evolution settle into a stationary pattern only after a few oscillation periods. In figure 6 we

plot the particle number evolution for varying interaction strenghts, again for our reference

set of inflaton parameters. The orderly parttern of the particle number evolution over the

inflaton oscillation periods remains, while the damping effect depends on the strength of

the interactions in a predictable manner.
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Figure 6: Shown is the number density n~kh in same setting as before with changing interaction

strengths. Thick black line is free field case with a coupling constant y = 0. The other lines are

interacting with y = 1 (green line), y = 3 (blue dotted line) and y = 5 (red dashed line).

As we mentioned, getting the parametric resonance needs some fine tuning of the

parameters. Moreover, when the resonance condition is not met, the evolution of the

system becomes much more complicated than the orderly behaviour shown in figures 4–6.

In figure 7 we plot the particle number evolution for the case where the inflaton oscillation

is exponentially damped, leading to a new modified mass function:

m(t) = m0 + e−γτ

(

A cos(2ωϕt) + iB sin(2ωϕt)

)

. (7.2)

Although we are using a rather small damping parameter, the evolution of the particle

number is dramatically changed. The orderly oscillation is replaced by an essentially chaotic

evolution over the resonance crossings with changing conditions. The effect of interactions

is also more pronounced, showing a very strong quantitative and qualitative dependence

of the evolution on the strength of the interactions.

Our results show that making the heavy particles unstable can have dramatic effects on

the pattern of the particle number production during the preheating stage of the inflation.

This instability is of course a necessary requirement as these states need to decay to the

standard model particles to eventually reheat the universe. However, our formalism is well

suited for a detailed study of this problem, if only the appropriate interactions are specified,

the necessary transport equation network is written down also for the daughter particles,

and when the inflaton dynamics is also modelled numerically along with the evolution of

the transport equation network. Moreover, our methods can be used to model coherent

baryogenesis [4], where collisions might have large quantitative effects. Let us finally note

that if one introduces a CP-violation into the heavy ψ-decays, one can use our formalism

to directly and accurately compute the evolution of the baryon (or lepton) number, in a

possible decaying heavy-fermion baryogenesis scenario during the particle production at

preheating.
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Figure 7: Same as in figure 6, but with the periodic mass term replaced by a damped oscillatory

mass: m(t) = (10 + exp(−γτ)(15 cos(2ωϕt) + i sin(2ωϕt)))|~k|, where γ = 0.05. Other parameters

are again set as in all previous figures. Thick black line shows again the free field case and the

interacting cases have the coupling constants y = 1 (green line), y = 3 (blue dotted line) and y = 5

(red dashed line).

7.2 Decoherence and thermalization due to collisions

As our last application we consider the thermalization and decoherence of an arbitrary,

correlated out-of-equilibrium density matrix by collisions. We consider a homogenous sys-

tem described by the weight function (4.2). We also take the mass to be a constant here,

and begin with a correlated initial state at t = 0, described by functions

n(0) = n̄(0) =
1

2
, f1(0) = 0 and f2(0) = 1 . (7.3)

We then use the equations (6.34)–(6.36) to calculate the evolution of the density matrix.

We assumed that the decay product species q and φ are in thermal equilibrium and the

parameters in the interaction term were taken as follows: coupling y = 1 and the masses

m = 10, mq = 0.02, mφ = 0.1 and the temperature T = 10 (all in units |~k|). The results of

the calculation are shown in figure 8. One sees clearly how the collisions smoothly damp

the amplitude of the oscillating coherence on-shell functions f1,2. As long as the coherence

functions are nonzero, they affect also the mass-shell functions that show a characteristic

oscillatory pattern. After the coherence solutions are damped out, the mass-shell functions

f± continue to approach their equilibrium limit, which for the current parameters corre-

sponds to neq ≈ 0.27, shown by the thin solid line in figure 8. This behaviour can also be

seen qualitatively from the eq. (6.37) in section 6. As a result the full 2-point Wigner func-

tion G< approaches the thermal limit G<
eq given by eq. (3.34), as it should. The time scale

for vanishing of the quantum coherence is here smaller than the thermalization time scale

simply because for the parametrization chosen for the problem, the k0 = 0-shell collision

rate is much larger than the mass-shell collision rate: Γ00/Γm ≈ 10.
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Figure 8: Shown is the evolution of the number density n~kh (thick solid line) and the coherence

function fh
c (wiggly dotted line) from an intially highly correlated out-of-equilibrium configuration

towards the thermal equilibrium. The thermal equilibrium value neq ≈ 0.27 is shown by the thin

straight line.

8. Conclusions and outlook

In this paper we have developed a quantum transport formalism, simple enough to be

used in practical calculations, for treating the coherent evolution of fermionic system in

the presence of decohering collisions. In our derivation we used the CTP-formalism for

the quantum field theory in the out-of-equilibrium conditions. The key element in the

derivation was the observation that in the mean field limit and in the quasiparticle approx-

imation in an interacting theory, the 2-point function has a singular shell structure, that

in addition to the usual mass-shell solutions contain new k0 = 0-solutions, which carry the

information about the quantum coherence between particles and antiparticles. Thus the

actual 2-point function can be understood as a dynamical phase space weight function, or

measure, with a number of unknown on-shell coefficient functions that carry the physical

information about the system. These can be interpreted as the out-of-equlibrium particle

numbers on mass shells and as functions measuring quantitatively the level of quantum

coherence on k0 = 0-shell. We showed that the new coherence solutions are excluded from

the spectral function by the spectral sum-rule, and that they are also eliminated from G<

by the KMS-condition in the thermal equlibrium limit. The fact that coherence solutions

appear only in the dynamical function makes sense, because they describe correlation be-

tween mass-shell states, and no coherence should be present without interfering physical

states (Solitary coherence functions can however, in some cases describe pairs of localized

virtual states [7].)

We then proceeded to show how a sensible physical density matrix can be defined by an

integration procedure which involves specifying the amount of external information on the

system. This information affects both the definition of the physical density matrix and its

eventual equation of motion. Finally we derived an explicit dynamical equation of motion
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for a physical density matrix corresponding to a spatially homogenous system, where the

3-momentum and helicity are good quantum numbers. We also computed the collision

integrals in the thermal limit for a model interaction Lagrangian, showing in particular how

different shells pick up different collision terms in the integration procedure, corresponding

to the different external momentum configurations at different shells. Finally, we applied

our formalism to the case of coherent particle production during the preheating stage of the

inflation including a finite decay width to the produced heavy particles. We showed that

including collisions can have dramatic effect on the evolution of the particle number, in

particular when one includes a nontrivial evolution of the inflaton field. We stress that our

method can be used to a quantitative analysis of the particle production during inflation

if one models the inflaton oscillation and evolution numerically, and includes a network of

transport equations also for the daughter states in the decay process. Finally we pointed

out that the method is also suitable for a quantitative analysis of coherent baryogenesis and

a computation of a baryon- or lepton number generation during decay of the preheating

produced heavy states. In our last example we showed explicitly how an initially highly

correlated out-of-equilibrium density matrix relaxes to a thermal equilibrium.

We believe that the current formalism will find applications in many different contexts,

also outside the cosmology. In particular we are currently extending the formalism also to

the case of relativistic bosonic fields and also to nonrelativistic systems. It is also interesting

to see how the usual fermionic flavour oscillation pattern arises in the present context when

the formalism is extended to the case with many mixing fermion flavours [7, 8].
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